Do Deep Neural Networks Suffer from Crowding?
نویسندگان
چکیده
Crowding is a visual effect suffered by humans, in which an object that can be recognized in isolation can no longer be recognized when other objects, called flankers, are placed close to it. In this work, we study the effect of crowding in artificial Deep Neural Networks for object recognition. We analyze both standard deep convolutional neural networks (DCNNs) as well as a new version of DCNNs which is 1) multi-scale and 2) with size of the convolution filters change depending on the eccentricity wrt to the center of fixation. Such networks, that we call eccentricity-dependent, are a computational model of the feedforward path of the primate visual cortex. Our results reveal that the eccentricity-dependent model, trained on target objects in isolation, can recognize such targets in the presence of flankers, if the targets are near the center of the image, whereas DCNNs cannot. Also, for all tested networks, when trained on targets in isolation, we find that recognition accuracy of the networks decreases the closer the flankers are to the target and the more flankers there are. We find that visual similarity between the target and flankers also plays a role and that pooling in early layers of the network leads to more crowding. Additionally, we show that incorporating the flankers into the images of the training set does not improve performance with crowding. This material is based upon work supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216. ar X iv :1 70 6. 08 61 6v 1 [ cs .C V ] 2 6 Ju n 20 17 Do Deep Neural Networks Suffer from Crowding? Anna Volokitin†\ Gemma Roig†‡ Tomaso Poggio†‡ [email protected] [email protected] [email protected] †Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA ‡Istituto Italiano di Tecnologia at Massachusetts Institute of Technology, Cambridge, MA Computer Vision Laboratory, ETH Zurich, Switzerland
منابع مشابه
Evaluation of Distance Measures for Speciated Evolutionary Neural Networks in Pattern Classification Problems
Recently, evolutionary neural networks are hot topics in a neural network community because of their flexibility and good performance. However, they suffer from a premature convergence problem caused by the genetic drift of evolutionary algorithms. The genetic diversity in a population decreases quickly and it loses an exploration capability. Based on the inspiration of diversity in nature, a n...
متن کاملDither is Better than Dropout for Regularising Deep Neural Networks
Regularisation of deep neural networks (DNN) during training is critical to performance. By far the most popular method is known as dropout. Here, cast through the prism of signal processing theory, we compare and contrast the regularisation effects of dropout with those of dither. We illustrate some serious inherent limitations of dropout and demonstrate that dither provides a far more effecti...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملAn adaptive estimation method to predict thermal comfort indices man using car classification neural deep belief
Human thermal comfort and discomfort of many experimental and theoretical indices are calculated using the input data the indicator of climatic elements are such as wind speed, temperature, humidity, solar radiation, etc. The daily data of temperature، wind speed، relative humidity، and cloudiness between the years 1382-1392 were used. In the First step، Tmrt parameter was calculated in the Ray...
متن کاملWide and deep volumetric residual networks for volumetric image classification
3D shape models that directly classify objects from 3D information have become more widely implementable. Current state of the art models rely on deep convolutional and inception models that are resource intensive. Residual neural networks have been demonstrated to be easier to optimize and do not suffer from vanishing/exploding gradients observed in deep networks. Here we implement a residual ...
متن کامل